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Linear Multistep Methods for Functional 
Differential Equations 

By Maarten de Gee 

Abstract. A new way to define linear multistep methods for functional differential equations is 
presented, and some of their properties are analyzed. The asymptotic behavior of the global 
discretization error is investigated. Finally, Milne's device is generalized to functional differen- 
tial equations. The effect of the nonsmoothness of the exact solution is taken into account. 

1. Introduction. Consider the functional differential equation (FDE) 
(1) x'(t) = F(t, xt) (to < t < T), xto = O, 

where x(t) E RI, 0 E C([-T,0], Rn), FE C([to,T] x C([-T,0], Rn), RI) and 
xt: 9 -* x(t + 9) for 0 E [ - T, 0], t E [to, T]. It is well known that the solution x of 
(1) is usually not smooth, that is, even if F and 4 are C? functions, x may have 
jump discontinuities in its derivatives. The occurrence of these jump discontinuities 
may lead to order-breakdown for numerical methods if no special provisions are 
made. It seems that all available techniques require information about the location 
of the jumps. If the delay is not state-dependent, then these locations may be known 
a priori. If not, then they may be calculated numerically (see Feldstein and Neves 
[6]). 

When the location of a jump discontinuity is known, two different techniques are 
available: 

(i) Make the location of the jump a grid point, and restart. In practice, this 
technique is only usable for delay-differential equations 

x'(t) = F(t, x(t), x(t - ),. . ., X(t - Tr)) 
and then it is quite efficient for one-step methods. (Note that the GBS-algorithm 
may integrate over a jump that lies on the grid without restart (see de Gee [8]).) 

(ii) Calculate the height of the jump and subtract a piecewise polynomial X from 
the solution x such that the difference is a smooth function. This difference is then 
calculated by solving the FDE for that function. This technique is usable for one- 
and multistep methods, and also for more complicated FDEs than delay-differential 
equations. 

This paper discusses linear multistep methods that use the jump correction 
technique as described in (ii) above. 
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2. The Construction of Linear Multistep Methods. Throughout this paper the 
following assumptions are made: 

Al. The FDE (1) has a solution x: [to - , T] -* R' that is a piecewise smooth 
function, i.e., there are Sl,..., SN E [to -,T] such that t - x(') exists as a 
bounded continuous function on [to - T, T]\ {sl,...,5 s4. Thus x(j) may have a 
jump discontinuity at t = sv, 1 < v < N, 1 <j < m, and x = x(m) + X, where 
x(m) E Cm([to - T, TI, Rn) and X is a piecewise polynomial of degree < m. 
(Sufficient conditions on F and 4 for Assumption Al may be found in de Gee [7].) 

A2. F is Lipschitzian with respect to its second variable: There are 8 > 0, M1 > 0 
such that for all '1, 42 E C([-,0],R=)with II4 - P211 8 

(2) I F(t, P) - F(t, '2)1 <- Mlll '1 - '2 11 

(This condition is sufficient for the uniqueness of the solution and for its continuous 
dependence with respect to perturbations in (1). Here and in many other places in 
this paper, constants M may be replaced by Riemann-integrable functions 
m: [to0 T] -- R+, at the cost of increased technical complexity of the proofs.) 

Since the right-hand side F(t, -) of the FDE (1) may contain functionals on 
C - T, 0], R) of continuous type, it is reasonable to allow F to be approximated by 
another function Fh: [to, TI x C([ - -, 0], R) -* RW. (This function may be thought 
of as being derived from F by means of a discretization method. Thus, if 

4 = X + 4(m), with A(m) E Cm([ - T 0], Rn), and X is a piecewise polynomial, one 
may replace F(t, 4) = f ? TP(O) dO by Fh(t, 4) = f J TX(O)dO + Qh(4(m)), where 
Qh is a quadrature method on [ - , 0].) For Fh we have the following assumptions: 

A3. Fh is uniformly Lipschitz continuous: There are 8 > 0, ho > 0, M2> 0 such 
that for all 41, 4'2 E C([- T,0], RI) with II'Pi - xtil < 8 and all h E (0, ho], 

(3) 1 Fh (t, 14J)-Fh (t, +2) 1 < M211 A1- + 1 

A4. Fh approximates F on the graph (t, xt): 

(4) Fh(t, xt) -F(t, xt) = o(l) as h -O, uniformly in t E [to T]. 

The mapping F -- Fh will be called 9. 
Besides the approximation of F by Fh (which in most cases amounts to approxi- 

mation of continuous functionals by discrete functionals) we also need an approxi- 
mation process to convert discrete functions to continuous functions. Let 

uj, Vj: [0,11 -] R be continuous functions, j = O,.. ., k. Then an approximation 
scheme -W is defined as follows: For any differentiable function z: [a, b] -* Rn the 
function 

k 

(5) V(r; z,t,h) = E [uj(r)z(t -jh) + hvj(r)z'(t -jh)], r E [0,1], 
j=O 

is (as function of r) an approximation of z(t + (r - I)h) for any t and h such that 
[t - kh, t] c [a, b]. The approximation scheme is assumed to be consistent: 

A5. For any differentiable function z: [a, b] -- Rn and any t e [a, b] 

(6) max|l(r; z, t, h) - z(t + (r - l)h) = o(l) as h -* 0. 

(Note that no uniformity in z or t is required.) 
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Finally, let AX0 = { a1,,)} be a linear multistep method for ordinary differential 
equations: 

aoYi + +akyi-k = h [Of(ti, Yi) + +f3kf(ti-k Yi-k)] 

yielding an approximation yi fpr the solution of the ODE z'(t) = f(t, z(t)) at t = ti. 
The generating polynomials of .#0 are p and a, respectively. X#0 satisfies the usual 
assumptions of consistency and stability; in terms of p and a: 

A6. p(1) = 0, a(1) = p'(1) # 0. 
A7. All roots X of p satisfy 1X1 < 1, and if IX = 1, then X is a simple root of p. 
A multistep method X4 for (1) may now be defined as a quadruple 4 = 

{5 4' Q9, X }. arises by substituting _ into #0, and using the resulting 
recursion in R' to approximate the values of the smooth part x(m) = x - X: 

k k 

E? aj[y(ti-y) - X(tiy )] = h F, 3j[y'(ti-j -X (ti-j)], 
j=O j=O 

y'(ti) = Fh(ti, P(ti, Y- x) + xti) 

(7) k 

P(t z)(O) = > [uj(m + 1 + O/h)z(t -(j + m)h) 
j=o 

+hvj(m + 1 + O/h)z'(t -(j + m)h)], 

OE[-(m+I)h,-mh],m=0,...,[T/h]. 
(Note that P(t,, y - X) approximates (x - X)t, being the result of piecewise 
approximation by _ on the iterates y(t,1j), j = 0, .. ., [l/h] + k, shifted back to 

[-X,O].) 

The local discretization error of the multistep method X4 is given by 
k 

(8) w t)= E {aj[x - X](t -jh) 
(8) j=0 

- h/3j[Fh(t - jIh, P(t - jih, x - X) + Xt-jh) - X'(t -liz)]). 
A' is consistent for (1) if 3h(#, t) = o(h) uniformly as h -* 0, and it has 

consistency order p if 8h(#, t) = O(hP+1) uniformly. 
A/ is stable for (1) if for sufficiently small h, for any bounded family { (h) } C 

C1([- T,O], Rn) and any family {Y(tj),Y'(tj)}<j<k-1 such that {y(tj)} and 
{ y'(tj)/h} are uniformly bounded, the corresponding family { y(ti)} is bounded 
uniformly in h and i < (T - to)/h. 

X' is convergent for (1) if for any family {? (h)} C C([ - , 0], Rn) and any family 
{ y(t1), y (tj)}0 <j< k- 1 with 

(9a) 11 - ((h = _ 
(1), 

(9b) ly(t1) - x(t,) I = o(1), 

(9c) h| y'(tj) 
- 

x'(tj) I = o(1) as h -* 0, 

the corresponding family { y(ti)} defined by (7) satisfies 

(9d) Iy(ti) - x(ti) I = o(1) as h -* 0, uniformly in i < (T - to)/h. 
It has convergence order p if (9d) has O(hP) in the right-hand side whenever 
(9a)-(9c) have O(hP) in their right-hand sides. 
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THEOREM 1. a. The multistep method .X is consistent for (1) if 
(i) the multistep method .Y0 for ODEs is consistent (Assumption A6) 

(ii) the approximation scheme _i is consistent: E uj(r) = 1 (Assumption A5) 
(iii) Fh(t, xt) - F(t, xt) = o(1) (Assumption A4) 
(iv) x - X is differentiable and Lipschitzian 
(v) Fh(t, *) is uniformly Lipschitzian (in the sense of Assumption A3). 

b. The multistep method ., is stable for (1) if 
(i) the multistep method .#0 is stable for ODEs (Assumption A7) 

(ii) F( t, -) is uniformly Lipschitzian (in the sense of Assumption A3). 
c. The multistep method X4 is convergent for (1) if it is stable and consistent, and it 

has convergence order p if it is stable and has consistency order p. 
d. The multistep method .X has consistency order p for (1) if 

(i) A%o has consistency order p 
(ii) si has consistency order p - 1, i.e., the right-hand side of (6) is O(hP) for any 

z e CP -1 with z (P - ) Lipschitzian 

(iii) Fh(t, xt) - F(t, xt) = O(hP) uniformly 
(iv) x - X E CP-1([to, T], Rn), and (x - X)(P-) is Lipschitzian 
(v) Fh(t, ) is uniformly Lipschitzian (in the sense of Assumption A3). El 

Theorem 1 shows that the properties of the various parts of which a linear 
multistep method is constructed are better preserved in X4 as defined in (7) than in 
the multistep methods considered by Tavernini [14]. Moreover, the construction (7) 
gives better opportunities to tune si and 9 to F. 

3. Asymptotic Behavior of the Global Discretization Error. Consider the ordinary 
differential equation 

(10) z'(t) = f(t, z(t)), z(to) = zo, 
with exact solution z(t). If zh(t) is the numerical solution obtained from a linear 
multistep method Yt0 with stepsize h, then (under conditions of smoothness of z 
and the accuracy of the starting procedure) one usually has 

(11) Zh(t) - z(t) = hPep(t) + O(hP"l) 

for some function ep. In particular, if z E CP?1, then the local discretization error 
satisfies 

(12) Sh(-O, t) = Cp+lhP+lz(P+')(t) + O(hp+2), 
and the function ep arises as a solution of the linearized problem along the solution 
curve of (10), with a forcing term proportional to z(P+'). If z(P+l) has a jump 
discontinuity, then (12) is no longer valid. Yet it will be shown that a result of the 
form (11) may still be obtained, for FDEs as well as for ODEs. For FDEs, where the 
solutions are rarely smooth, this means that we do not have to correct the jump 
discontinuities to a higher order for (11) than we have to for obtaining pth order 
convergence. 

The following lemma describes the effect of a jump discontinuity in the p + 1st 
derivative of the solution on the local discretization error of /.# 

LEMMA 2. Suppose that .#k0 is a k-step method for ODEs with order p and error 
constant Cp +?1, i.e., the local discretization error of X#k0 for an ODE that has a C?? 
solution z satisfies (12). Then the local discretization error of X0k% for an ODE with a 
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solution z E Cl[to, T] such that z(P) is Lipschitz continuous on [to, T] and continu- 
ously differentiable on [to, T] \ { s 4, satisfies 

(13) 8h(Glo t) = Cph4 hP+lz(P+)(t) + y((t - s)/h)hP+'Az(P+l) + 0(h2p+2 

where 

-z(p+l) = lim(z(P+1)(S + 8) - Z(p+1)(s - 8)), 
aj10 

(14) y(r)= E aj(r j)p+l/(p + 1)!P-,/(r -j)p/p!. 
j>r 

Proof. Because z (P +1) is Riemann-integrable, the Taylor formulas 
p U 

z(u) = , z(')(t)(u - t)'/l! + f (u -r)pz(P+)(r)lp!dr 
1=0 t 

pU 
Z'(u) = z(')(t)(u - t)'-1/(l - 1)! + u (u - r)P lz(P+?)(r)/(p - 1)!dr 

l=l t 

are valid. Because .# has consistency order p, the polynomials do not contribute to 
Sh(A'o, t). Hence, 

Sh (#O, t) =E | [-aj(t -jh - r) Plp! 
j=0 t-jh 

+h/31(t -jh - r) /(p - 1)!] z(P l)(r) dr. 

In the integrals we set z(p+l)(r) = z(p+l)(t) + (1 - Hs(r))Az(P+l) + 0(h), where 
Hs is Heaviside's function at s. Thus for s < t, 

k 

Sh(h# t) = Z(P+)(t) E [aj(-jh)p+l/(p + 1)! - hf3(-jh)p/p!j 
j=0 

? Az(p+l) E | [afj(t -jh -r) /p! 
j>(t-s)/h -jh 

-h/1(t -jh - r)P1/(p - 1)!] dr 

+ o(hp+2) 

= Cp+1hP+lz(P+ )(t) + y((t - s)/h)hP+1Az(P+l) + 0(hP+2). E 

Remarks on Lemma 2. 
1. The function y is a primitive of the function G in Lambert [11, p. 50 ff.]. 
2. Formula (13) is not an expansion in h of the local discretization error in the 

usual sense, because the argument of y depends on h. 
3. Although not valid in general, for many widely used methods the relation 

maxlIy(r)l = ICp+1l turns out to be true. In Figures 1-4, y has been plotted for 
- the Adams-Bashforth schemes of order p = 1,... , 9 (thus k = p); 
- the Adams-Moulton schemes of order p = 1, .-. , 9 (thus k = 1 for p = 1, 

k = p - 1 for p > 1); 
- the implicit backward-difference schemes of order p = 1,... , 6 (thus k = p); 
- the explicit midpoint rule and Simpson's rule. 

These figures show how nicely Iy(r)I tapers off from ICp+1I at r = 0 to 0 at r = k. 
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We now present a theorem on the asymptotic behavior (for h -O 0) of the global 
discretization error of the multistep method A'. This requires somewhat stronger 
conditions on the FDE than those we have made in Section 2. So we replace the 
Assumptions Al-A4 by the following: 

Al'. The FDE (1) has a solution x such that x = x(p) + X, where X is a piecewise 
polynomial of degree < p, and x(p) E CP([to, T], R). x(P) is piecewise continuously 
differentiable with bounded derivative, which may have a finite number of jumps. 

A2'. F(t, *) is Frechet-differentiable on the graph (t, xt). The partial derivative, 
denoted by L(t) = 3F(t, ) is bounded: 

(15) jjL(t)1< M1. 

A3'. Fh(t, *) is continuously differentiable: There are E > 0, ho > 0 and M2 > O 
such that for all i Ee C([ -T, O], RI) with j'4'i - x,11 < E and all h E (0, ho], 

(16) aFh (t, A1) - aFh(t,P2) - M2A41-211- 

A4'. There is a bounded, piecewise continuous function 1: [to, T] R' such that 

(17) Fh(t, xt) - F(t, xt) hPl(t) + 0(hP +), uniformly in t E [t0,T]. 

Furthermore, for any compact subset * c C([to-, T], Rn), 

(18) T. Fh(t i xt) ut - L (t) ut = 0(h), uniformly in u E 9 and t e [ to, T]. 

(Again, the constants M1, M2 and the hidden constants in (17) and (18) may be 
replaced by Riemann-integrable functions; 1 may be Riemann-integrable too.) 

THEOREM 3. Let p > 1. Let the families 

{+(h)}I C C([-T,0], Rn), y(tj), AO (t)ojok_,1 

be such that 

||+(h) - = 0(hP+1), y(tj) 
- 

x(tj) 0= (hP+'), y'(tj) 
- 

x'(tj) 0= (hP). 

Let X0 be a stable linear k-step method for ODEs of consistency order p, with 
generating polynomials p and a and error constant c = Cp+1/a(l). Let a? be an 
approximation scheme of order p. Let 9 be the mapping F -* Eh, satisfying A2'-A4'. 
Let x be the solution of (1), satisfying Al'. Let { y(ti)) be the numerical solution of 
(1), generated by A = { A0, V, -9, X with stepsize h. Let ep: [to - T, T] -* Rn be 
the solution of the linear FDE 

(19) ep(t) = L(t)(ep)t + I(t) - cx('P+)(t), (ep), = 0. 
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Then the global discretization error e(ti) = y(ti) - x(t,) satisfies 

(20) e(t,) = hPe,(t,) + 0(hP+1). 

Proof. On account of Theorem 1, y(t,) - x(t,) = 0(hP) uniformly, and because 
-V has order p, JJxl, - Xt - P(ti, x - X)II = 0(hP+1). Hence, 

Fh(t, P(t,, y - x) + X,) I-F(t,, xt) 

= Fh(ti, P(tl, y - X) + Xt ) -Fh(ti, P(t,, X - X) + Xt,) 

+Fh(ti, P(t,, X - X) + Xt) -Fh(ti, Xt) + Fh(t,, Xt) -F(t, xt) 

= aa,,Fh(t,, P(t,,x - X) + xt)P(t, xt,) + o(l P(t ,x - y) 2) 

+ a 
+F(ti,xt,)(Xt, - xt, - P(to,x - X)) 

+0 ?(|xt - xt - P(tl, x - X) 21) + hPl(ti) + o(hP+l) 

= -+Fh(t,, P(t,, x - X) - Xt)P(t,, x - y) + hPl(t,) + 0(hP+1) 

= ad,FhhtiI Xt )P(tF x -y) + hPl(ti) + 0(hP) 

= L(ti)P(tl, x - y) + hPl(tl) + O(hP+1). 

The last step is justified because all functions of the form P(t,, x - y) are linear 
combinations, with coefficients that are 0(hP) in magnitude, of the functions u1, V1 
of -W. Hence the family h -PP(ti, x - y)} is bounded and equicontinuous, and 
therefore relatively compact. Thus (18) may be used. 

The global discretization error satisfies 
k k k 

E aje(t,-1) = a j1[y - X](t,-J) - E aj[x - X](t,-J) 
j=O j=O j=O 

k 

= h E 3 [Fh(ti-, P(tlj, y - X) + Xt,,)- F(t,-J, xt,,)] 
J=O 

k k 

+h E fj[x - X]'(ti-1) - E a1[x - 
X](t,-j) 

j=O j=O 

k 

= h E I31[L(t,-_)P(ti_y,e) + hPl(t,_1)] 
j=O 

+hP+1 [Cp+1x(P+1)(tJ) + Ey((t - sv)/h)?,\x(P+?)] + o(hp+2), 

where {sj are the jumps of x(P+ ). Writing e(t0) = e(t,)/hP we find that for all i 

such that x(P+ ) has no jumps in [t,, t?+kI, 

k k 
( 
aJj(t, J) = h 2),[L(t,_J)P(t, ,e) + I(t,_ J)-cx(p+1)(t,] 

+ 0(h 2) 
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while for those i for which x(P") has one or more jumps in [ti, ti?k], 

k 

E ajO(ti-J) = 0(h). 
j=O 

Since x(P? ) has a finite number of jumps, (21) holds for all but a finite number of 
i, uniformly in h E (0, ho]. On the other hand, (21) is-up to a perturbation 0(h2) 
-the result of the multistep method {X A, _W, -, -} applied to the FDE (19). A 
slightly modified form of Theorem 1 (to deal with the perturbations; compare, e.g., 
Tavernini [14, Lemma 3]) is now used to show that e(ti) = ep(ti) + 0(h), which 
completes the proof. E 

Remarks on Theorem 3. 
1. It will be clear that A1'-A4' imply Al -A4. 
2. Comparison of the conditions of Theorem 3 with those of Theorem 1 shows 

that: 
- the smoothness conditions on F and Fh are made somewhat stronger, as well 

as the conditions of convergence of Fh to F, but 
- the order of convergence of Fh to f remains the same; 
- the order of the multistep method X'0 remains the same; 
- the smoothness conditions on x between the jumps of its derivatives are made 

stronger, but 
- the number of derivatives for which the jumps are taken into account remains 

the same; 
- the order of the approximation scheme _W is one higher in Theorem 3 than in 

Theorem 1. So by a different argument we come to the same conclusion as 
Arndt [1], [2]: For asymptotic error estimates and stepsize control of a pth 
order method, one should use an approximation scheme that has an order 
higher by 1 than is necessary to obtain pth order itself. 

4. Predictor-Corrector Methods and Milne's Device. Results of the form (11) are 
often used locally in ODE solvers for stepsize control. Basically, there are two ways 
to use (11) to this end: 

a. By comparing two approximations of different order. Examples are: 
- Runge-Kutta-Fehlberg algorithms (cf. Fehlberg [5]). For generalizations to 

delay-differential equations, see Oberle and Pesch [12] and Oppelstrup [13]. 
- The Gragg-Bulirsch-Stoer algorithm (cf. Bulirsch and Stoer [4]). For a gener- 

alization to delay-differential equations, see de Gee [8], [9]. 
b. By comparing two approximations of the same order, for example in a 

predictor-corrector scheme. In this case the technique that yields an estimate for the 
local error is called Milne's device. In practice, a predictor-corrector is mostly used 
in Pk+lECkE mode, where Pk+? and Ck are a k + 1st order Adams-Bashforth- 
Moulton pair. In [3], Bock and Schloder have reported on a code (REBUS) for 
delay-differential equations using predictor-corrector methods with Milne's device. 
However, no details are given. 
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In this section Milne's device is generalized to multistep methods .# for FDEs. To 
avoid technical complications, the underlying multistep methods for ODEs are 
assumed to be Adams-Bashforth-Moulton pairs of the same order. Some justification 
lies in the fact that these are by far the most widely used methods. 

Let for k> 2, 40 be the kth order Adams-Bashforth formula and '#% be the 
k th order Adams-Moulton formula for ODEs. Their generating polynomials are 
(p, ) and (p, a), respectively: 

k+1 

p(X) = xk(x - 1), a(X) = E fiXki?+l 

j=1 

k 

p(X) = Xkl(X - 1) (X) = E PjXA-j. 
j=O 

Let _W be an approximation scheme of the form (5) that does not use z'(t) as a 
known value, i.e., vo(r) = 0, r e [0, 1]. Then the following relations define a 
Pk+ lECkE method for FDEs: 

k+1 

y(ti) = y(ti-1) - X(ti-1) + X(ti) + h Y Pj[y'(ti-,) - X (ti-j)], 
j=1 

/ ~~~~~k 
uo(l + O/h)2z + E [uj(l + ?lh)z + hvj(l + ?lh)z"-j], 

P(tj,z,Zi)= [-h,o], 

(22) (P(ti, z), 0 E [-T, -h), 

y'(t,) = Fh(tj, P(tl, y - x, (ti) -X(t)) + X 

y(ti) = y(ti l) -- X(ti-l) + x(ti) 

+h[0o(y'(ti) - X'(ti)) + E k j(Y'(ti J) - Ot,)) 

y'(ti) = Fh(ti, P(ti, Y - X) + Xt,)- 

As before, x is the solution of (1). Define x by 

x(t) = x(t - h) - X(t - h) + X(t) 
k+1 

+h E j[AFh(t -jh, P(t -jh, X - X) + Xt-jh) - X'(t -jh)] 
j=1 

Then 6h(CXtP, t) = x(t) - x(t) is the local discretization error of the predictor for 
FDEs, cf. (8). Similarly, 

6h(/fC, t) = x(t) - X(t) - x(t - h) + X(t - h) 

k 

- h E fj [ Fh (t - ih, P(t - ih, X - X) + Xt-jh) - X(t - ih)] 
j=O 
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is the local discretization error of the corrector method for FDEs, and 

Sh(PC t) = x(t) - x(t) - x(t - h) + x(t - h) 

,-hI3o [Fh (t, P(t, x - x, . (t) -X (t)) + Xt) -X(t) 

k 

-h Pi [jFh (t - jh, P(t - jh, x - X) + Xt-h ) - X'(t - jh)] 
j=1 

is the local discretization error of the predictor-corrector method (22). From these 
definitions it is easily shown that under the conditions of Theorem 3, 

(23) 6h(4PC, t) = Sh(&C, t) + O(hk 2). 

Furthermore, a straightforward variation of the proof of Theorem 3 shows that the 
predictor-corrector method (22) has a global discretization error 

(24) e(ti) = y(ti) - x(ti) = O(hk), uniformly in i < (T - to)/h. 

LEMMA 4. Let the assumptions of Theorem 3 be satisfied. Assume, moreover, that 
the function t --> L ( t) in A2' is Lipschitzian. Then 

y (ti) -.p(ti) = 6h ( # c , ti) - 
6h ( QP tI ) 

+ O(hk+2), uniformly in i < (T- to)/h. 

Proof. If we set 1k+ ? = Po = 0, then the coefficients Pi and Pj of a and a satisfy 
the relations - f3 = (- )J(k ?1)/o I = O,...,k + 1. Furthermore, 

k+1 

y(tl) -jy(tj) = hfl3o'(ti) + h E (I3j - Ai)y'(ti-1) 
j=1 

k+1 

= h E (I3 - Pj)y'(ti-j) - hl30(y'(t,) -y (t,)) 
J=O 

k+1 

= h E (3J - fj) Fh(ti-j, P(tij, y - X) + X, 
J=O 

- Fh(t, 1 P(ti_, x - X) + XtJ 

(25) k 
+h E (Ij - Pj)Fh(ti_j P(t,l x - X) + Xt, ) 

j=O 

- h1O(y'(ti) - Y'(ti)) 
k+1 

= h E (3J - j4)Fh(t,_j, P(tiJ, y - x) + Xt. ) 
j=O 

-Fh(t,1, P(ti J, X - x) + XtJ 

+6h( ///c, t,) - 
6h(-#P, ti) - h1o3(y'(tl) - (tl)). 
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Now consider the last sum on the right. It may be rewritten as 

k+1 

h P (13- )[Fh(t_i, P(ti1, Y - X) + X? , ) 
j-O 

-Fh(ti], P(t1, X -Xx) + X")] 
k+l 

-h E (Pj - Pj)[L(tj-j)P(ti_J, y - x) + o(maxly(tl) - x(t,) 12) 
j=O 

+O(hmaxly(t,) -x(t,)| I xt - Xt - P(t11, x - x)LlI 
(26) k?1 ? 2k 

hE (h -kf1+)L(tjj)P(tj)P(e) + O(he) 

j==O k h 

-hA 0 1 (-1 ) k + I 
L(t,_j)P(t_j-je) + O(h 2k+1) 

j=O 

=hflo E (-i) (y [ L(ti_, )(P(ti_y, e) )-P( ti-j_1, e )) 

+ (L(tij) - L(t11j))P(tj-j-j, e)] + O(h2k+l) 

-O(hmaxlel- e,-_1) + O(h2maxle,1) + O(h2k?l). 

By definition of e, 
k 

e(ti) -e(ti-1) =h E Pj [F (t_ P (ti_js X-X, (X -X)(ti-j)) + X, 
j=O 

-Fh(ti-j P(ti-j, y-x (Yx-X)(ti-j)) + Xt, 

+ Sh (,PC ti) 

k 

-h E 13O(maxlej1 + jh(#,, ti) j) + Sh(ApC, t1) = O(h k?), 
j=O 

because leif = O(hk) and 3h(-p, t) O(hk+l), 3h(fpc, t) = O(hk+l). Thus we 
find that (26) is O(hk+2). Substitution of this result in (25) yields 

y(ti) - (ti) = 3h("c, ti) - 
Sh('#p' ti) - hf3O(y`(tj) - j"(ti)) + O(hk+2), 

from which the assertion follows. Ol 

THEOREM 5 (Milne's device). Let the assumptions of Lemma 4 be satisfied. Let the 
functions y and y be defined as in Lemma 2, corresponding to the corrector and the 
predictor, respectively; Ck l and Ck l are the leading constants in the expansion of 
the local discretization errors. Then 

-Ck? (Yi Y) 
Ck+l - Ck+l 

= h('PC, ti) 

+ E [ek+jy((t1 - s,)/h) - Ck+l,((tj - sv)/h)] A,X(k+l) + O(hk+2). 
v 
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Proof. This theorem is an immediate consequence of Lemmas 2 and 4. [ 
We conclude this section with some interpretative remarks on Theorem 5. Ideally, 

one would like to see that Milne's device monitor the local discretization error 

h ( pct) = hk [CkX(k + 1) (t ) + Ey((t - s,)/h)A,x(k+1)] + O (h k+2). 

Instead, Milne's device monitors the quantity 

h [k1Ck +1Xkl) ( t) + LCk + 1 y(( t -sv)/h) 
- 

( ((t 
- sJ)/h) P 

v Ck?1 - Ck+l 

+ O(hk+2). 

In Figure 5 we have plotted y(t) (dashed curve) and 

Ck+l(y(t) - (t))/(Ck+l - Ck+l) 

(solid curve). 
It turns out that Milne's device does detect the jump in x(k+ 1), but one step later 

than it should. Therefore, assuming that the stepsize control mechanism is robust 
enough (and control mechanisms based on Milne's device usually are), we suggest 
the following strategy (also recommended by Gottwald and Wanner [10] for 
Rosenbrock methods): If the control mechanism forces the stepsize to be decreased to 
integrate the FDE from ti to ti + h, either because a previous attempt has been rejected 
or because of prudency (this may happen if the tolerance is approached closely), then 
reject the integration step from tiy1 to t1, and integrate from ti-1 with decreased step. 
In this way, the delayed detection of the jump may be used at the proper interval of 
integration. Note that this strategy does not require additional storage of y(ti) and 

y'(ti), since these values are stored for the calculation of the functional anyway. 
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